Drought in agriculture leads to severe economic losses for the farmers and the country. This is now being intensified due to climate change and the frequency of drought is increasing each year. There are reports highlighting drought as one of the key factors that is contributing to the continuing rise in the number of hungry people and jeopardising the food security of countries.
Sustainable management of natural resources is an integral part of growing healthy crops. Since the economic liberalisation and introduction of new crop varieties, farmers have been using water in abundance without adopting sustainable practices and it has resulted in the lowering ground water table and degradation of the health of soil. India is an agrarian society and majority of the farmers are small holders. This indicates that they are not equipped to deal with losses posed by unpredictable weather and they do not have the financial capabilities to get access to technologies that can help them adopt a different strategy.
There are several drought tolerant hybrid varieties in crops in India like rice, wheat, maize, sorghum, pearl millet, barley, chickpea, groundnut, soybean, sugarcane, cotton and jute. Recently, 35 new crop varieties were dedicated by the Prime Minister of India to the nation,of which several are drought tolerance varieties. While farmers are adopting these varieties, they have not been able to achieve optimum production level.
Another challenge involves accelerating the breeding of improved varieties, as it takes scientists 10 or more years to commercialise the product. In this period, the scientist after breeding the variety, tests the seed to accurately characterise the traits involved and the tests are carried out in multiple locations. With the rapidly changing environment, 10 years is a long phase to predict the desired results, further, not many farmers are aware of these varieties that are available in the market.
Given the several roadblocks in developing and realising the benefits of a new heat tolerant variety, adoption of innovative technologies to overcome the challenges is critical. Gene editing can rapidly decrease the breeding time to two years and introduce beneficial traits at the same time. It allows breeders to work within eliteplant’s own gene pool to try to reach the same endpoint as they would through more traditionally breeding methods–but with greater precision and efficiency.
The use of gene editing to develop new plant varieties isa promising and growing field. Gene editing applications that lead to DNA changes that could also occur in nature or from more traditional breeding methods particularly are of most interest. Because of this, genetic changes resulting from gene editing cannot reliably be differentiated from the same changes that can occur by traditional breeding or spontaneously in nature.
The primary benefit from gene editing is that it is flexible and can provide more choices to the breeders. Because of its ease of implementation, small entities, public sector institutions, start-ups, smaller companies can develop innovative products without concerning themselves on upfront investment. Therefore,staple crops which are water guzzlers like rice, maize, soybean, wheat, beans need improvement through gene editing. Many countries have paved a path of predictability and acceptance in gene editing guidelines which has encouraged scientists, developers, institutions, start-ups to evaluate and develop crops that can be made healthier, cheaper and which complements the environment to sustain the crop and food security. We believe India too will realise the opportunity that gene editing has provided to the world and make the nation and farmers at one with other countries.